

Q2 | 2024

PREPARED BY
Vance Walsh
Security Engineer

EDITED BY
Joshua Christman
Chief Operations Officer | OSCP, OSCE

LAST REVISION
May 6, 2024

CONTACT
737.270.9486
contact@opensecurity.com

OPEN SECURITY
RISK ASSESSMENT
REPORT
ARCONNECT SOURCE CODE AUDIT

COMMUNITY LABS

OpenSecurity.com

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

2

Table of Contents

EXECUTIVE SUMMARY 3

RISK METHODOLOGY 5

ENGAGEMENT OVERVIEW 6

SECURITY ROADMAP 7

Short-Term Remediation 8
Mid-Term Remediation 9

ARCO-2024-01: Vulnerabilities in Open Source Dependencies (Remediated) 10

Long-Term Remediation 12

ARCO-2024-02: Unexploitable DOM-based XSS 13
ARCO-2024-03: getActiveKeyfile and freeDecryptedWallet function usage 16
ARCO-2024-04: React State kept in-memory after use 19
ARCO-2024-05: HTML a tag with REL properties misspelled (Remediated) 21
ARCO-2024-06: Suggested Hardening Changes 23

METHODOLOGY 24

Phase 1 – Overall Secure Code Review 24
Phase 2 – Code review of changes since last review 24
Phase 3 – Attempted Exploitation and Creation of POC’s for Identified Vulnerabilities 25

POC 1 – Explore Page PermaWeb News RSS Feed XSS Injection Attempt 27
POC 2 – XSS Attempts Within a Malicious Subscription 29

APPENDIX A: SECURITY TEAM SNAPSHOT 31

APPENDIX B: DETAILED SCOPE 32

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

3

EXECUTIVE SUMMARY

OVERVIEW
The ArConnect Source Code Audit provided to Community Labs is intended to provide awareness of any
potential methods of attack that could be leveraged by an external party against the ArConnect browser
Extension. Testing started on 15 Apr 2024 and ended on 26 Apr 2024 and consisted of a secure code
review for the ArConnect browser extension. For more details see Appendix B: Detailed Scope.

DESCRIPTION
The secure source code audit was conducted
using methodologies developed by the Open
Web Application Security Project (OWASP).
These methodologies were utilized to ensure
standardization and rigor throughout the
assessment. The entirety of the engagement
was conducted using the Google Chrome
browser and installing the development build of
the ArConnect browser extension.

Custom malicious proof-of-concepts (aka POCs)
were developed to test cases where
vulnerabilities were suspected. This included
modifying and testing development builds of the
ArConnect browser extension with maliciously
modified source code, hosting webservers with
malicious payloads and debugging the browser
extension. In all test cases, the ArConnect
application showed a strong defensive posture
and the attacks were unsuccessful.

FINDINGS BREAKDOWN
A breakdown of findings by severity is provided
in the chart below, which informs the overall risk
rating for the ArConnect Application. Since
delivery of this report, all findings have been
remediated to be no more than Informational-
severity.

5

1

Informational Low Moderate
High Critical

INFORMATIONAL LOW MEDIUM HIGH CRITICAL

CURRENT RISK RATING
Informational

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

4

KEY FINDINGS

During this Source Code Audit zero Critical-risk,
one High-risk and five Informational findings
were identified in the source code of the
ArConnect browser extension.

§ ArConnect’s primary source of risk originates
from vulnerabilities in open-source
dependencies. Community Labs must
consistently update and apply upstream
patches for open-source dependencies in
order to protect from Supply-chain attacks.

§ Several code changes have been

recommended to harden the ArConnect
browser extension, including addressing a
currently unexploitable DOM-based XSS

IDENTIFIED TRENDS

The following trends were identified that are
present in many of this report’s findings. By
addressing these trends, Community Labs can
make proactive strides towards preventing
security problems from arising.

§ Open-source dependencies will consistently
have new vulnerabilities found. Keeping
these updated on a consistent basis will
greatly benefit the security posture of
ArConnect

§ Memory safety continues to be an important

consideration for the ArConnect browser
extension development lifecycle. Hardening
the browser extension against memory
dumps can further solidify the secure
posture of ArConnect

RECOMMENDED ACTION ITEMS

§ Improve Package Management Update

Schedule:
All high-risk findings stem from out-of-date
open-source packages. By utilizing a
consistent schedule to update the open-
source packages, Community Labs can
ensure that the overall risk posed to the
ArConnect browser extension project is
reduced.

§ Implement Additional Hardening Code
Changes:
Improving overall code security by
implementing as many of the suggested
changes as possible. These hardening
measures could help to mitigate the
potential for higher severity findings in the
future.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

5

RISK METHODOLOGY

Information security is not about eliminating risk. It is founded upon the science and discipline of risk
management. This is an important distinction because computer systems are inherently designed to
share information while security strives to guard it. Therefore, it is management’s role to weigh the
benefits of information sharing with the potential security risks of doing so, all while enabling the
organization to achieve its objectives.

INFORMATION SECURITY RISK RATING SCALE
To effectively evaluate the security posture of a client’s network, Open Security uses the Information
Security Risk Rating Scale shown below. This scale is based on the open-industry Common Vulnerability
Scoring System (CVSS) against the Common Vulnerabilities and Exposures (CVE) Dictionary maintained
by the National Cybersecurity Federally Funded Research and Development Center (FFRDC) with funding
from the National Cyber Security Division of the US Department of Homeland Security. This base CVSS
score, the likelihood of exploitation, and the impact of exploitation are all considered to determine the
overall risk presented by the vulnerability.

RISK RATING KEY
When evaluating remediation timelines for your environment, Critical network and system vulnerabilities
should be addressed as quickly as feasible. The bulk of effort will likely involve those rated as High and
Medium. Open Security recommends that these risks be remediated as soon as possible after report
delivery. While it is of vital importance to identify solutions to all risks affecting the network, those rated
Low can be approached methodically, in line with general information security best practices without
accepting significant risk of severe financial or data loss. Informational vulnerabilities are meant to point
out accepted best practices but are not included on the chart below because they are either
unexploitable in the environment or an exploitation would have no impact on the environment.

Critical risks: very high likelihood of exploitation
and possibility of catastrophic financial losses.

High risks: high likelihood of exploitation with the
possibility of significant financial losses.

Medium risks: average likelihood of exploitation
with the possibility of material financial losses.

Low risks: below average likelihood of
exploitation with the possibility of limited
financial losses.

Informational risks: below average likelihood of
exploitation with little to no impact as a result.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

6

ENGAGEMENT OVERVIEW

SCOPE
Community Labs and Open Security collaboratively defined the scope of this project to include a secure
source code review of the ArConnect browser extension. Additional information on scope can be found
in Appendix B: Detailed Scope.

The focus was on vulnerabilities within the browser extension only. As such, all domains within the
ArConnect source code were considered out-of-scope as well as the open-source libraries utilized within
the source code. Lastly, any vulnerability tests were conducted in a local environment, separated from
the view of the public (i.e. no data was written to a public blockchain or uploaded to a Third-Party
website). There were no additional restrictions on the scope of this penetration test.

Open Security engineers were in real-time communications with key stakeholders throughout the
engagement and reported all Critical findings as soon as they were identified.

RULES OF ENGAGEMENT
Open Security did not use any cyberspace methodologies which could hinder real-world operations. This
assessment consisted of a phase of secure source code review for vulnerability identification and
evaluation of the ArConnect browser extension.

An active exploitation phase was then performed using a modified development version of the browser
extension where exploitation of all non-denial of service vulnerabilities was considered in-scope.

SECURITY SNAPSHOT
This report represents a “snapshot” of the security environment assessed at a specific point in time.
Conditions may have improved, deteriorated, or remained the same since this assessment was
completed. Open Security cannot guarantee the discovery of all system vulnerabilities, breaches, or
attempted breaches. Should there be any questions regarding the contents of this report, please do not
hesitate to contact Open Security.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

7

SECURITY ROADMAP

OVERVIEW
To strengthen overall information security, Open Security has provided a prospective security roadmap
below. The timeline is broken into short-, mid-, and long-term remediation efforts to help security teams
prioritize their work. Recommendations are based only on the information gained from this engagement
and may not work for all security programs – though they may be a good starting point for planning
discussions.

The roadmap takes the overall severity of each finding into account, alongside an estimate of the
resources required to address each finding, in order to recommend short-, mid-, and long-term
remediation efforts. In other words, a low-risk finding may be recommended for short-term remediation if
minimal effort is required to generate a fix, while high or medium risk findings may be prioritized lower if
substantial resources must be committed to address a vulnerability. Critical findings should almost
always be addressed in the short term in some way, even if only a temporary stopgap is used to reduce
risk while a more permanent solution is employed in the long term.

SUMMARY OF FINDINGS
During the 2024 Q2 ArConnect Source Code Audit, Open Security discovered 0 Critical-, 1 High-, and 0
Medium-severity findings. An additional two vulnerabilities were rated as presenting 0 Low risk. Findings
are listed once even if they pertain to multiple systems across the network and vulnerabilities of
common criteria are grouped together.

Finding ID Description Severity Remediation

ARCO-2024-01 Vulnerabilities in Open Source Dependencies High Yes

ARCO-2024-02 Unexploitable DOM-based XSS Informational N/A

ARCO-2024-03 getActiveKeyfile and freeDecryptedWallet function usage Informational N/A

ARCO-2024-04 React State kept in-memory after use Informational N/A

ARCO-2024-05 HTML a tag with REL properties misspelled Informational Yes

ARCO-2024-06 Suggested Hardening Changes Informational N/A

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

8

SHORT-TERM REMEDIATION

Short-term remediations should be prioritized for implementation in the next 21 days. These findings
typically rank higher in severity and will address the most dangerous vulnerabilities to an organization.
They also may be included if there appear to be risks related to maintaining mandatory compliance or
other regulatory requirements, as failing those audits may impact continued business operations.

No findings were discovered that were of Critical Severity, which is an outstanding result. This indicates an
excellent short-term security posture for Community Labs.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

9

MID-TERM REMEDIATION

Mid-term remediations should be prioritized for implementation in 21 - 45 days. These findings are
usually categorized by a cost-benefit analysis of security impact and effort to implement. A high risk
finding with significant resource and planning investment may be included here – though every effort to
speed up remediation should be made if technical or procedural circumstances allow.

Finding ID Description Severity Remediation

ARCO-2024-01 Vulnerabilities in Open Source Dependencies High Yes

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

10

ARCO-2024-01: VULNERABILITIES IN OPEN SOURCE DEPENDENCIES
(REMEDIATED)

VULNERABILITY RATING: High
CVE/CWE: CWE-1395: Dependency on Vulnerable Third-Party Component
DISCOVERY METHOD: Yarn Audit Command

REMEDIATION STATUS:
Remediation testing was performed on May 3, 2024, utilizing the source code from commit
https://github.com/arconnectio/ArConnect/pull/272/commits/ea46e34460aff8f2ddd4145f4a6f4e78dc3
9e0c8. As shown in Figure 1, no vulnerabilities were found running a yarn audit command, fully
remediating this finding.

Figure 1 - Yarn Audit Output After Remediation

DESCRIPTION:
When developing software, the security of its dependencies (i.e. the Software Supply Chain) is a
significant attack surface. The Supply Chain can affect a product's security at any time in the
development process by attacking the developers' tools themselves with malware or by simply
introducing vulnerabilities into the software. NPM dependencies, in particular, can be challenging to keep
up-to-date due to the complex dependency relationships that develop in the NodeJS ecosystem.

ANALYSIS:
The ArConnect Browser Extension has many out-of-date dependencies, with 4 Critical-, 15 High-, 36
Moderate-, and 14 Low-severity vulnerabilities being reported by the yarn audit command. The impact
of these vulnerabilities is highly variable, though the Critical vulnerabilities include dangerous issues
such as 'Babel vulnerable to arbitrary code execution when compiling specifically crafted malicious code'
(see NPM Advisory in References).

REPRODUCTION STEPS:
Run the command yarn audit, noting the response. A large amount of output will be shown, similar to
below.

... SNIPPED for brevity
69 vulnerabilities found - Packages audited: 1759
Severity: 14 Low | 36 Moderate | 15 High | 4 Critical
✨ Done in 4.73s.

https://github.com/arconnectio/ArConnect/pull/272/commits/ea46e34460aff8f2ddd4145f4a6f4e78dc39e0c8
https://github.com/arconnectio/ArConnect/pull/272/commits/ea46e34460aff8f2ddd4145f4a6f4e78dc39e0c8

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

11

RECOMMENDATION:
Follow the steps below to automatically apply non-breaking changes/updates from the NPM registry. For
any vulnerabilities that are not fixed automatically, replacement packages or manual updates may be
required in order to deal with breaking changes.

1. Run the command yarn audit, noting the response (69 vulnerabilities found, 14 Low | 36
Moderate | 15 High | 4 Critical)

2. yarn upgrade
3. After executing these commands, the vulnerabilities are reduced to 13 vulnerabilities (0 Low, 4

Moderate, 9 High), which will need to be dealt with manually due to breaking changes and/or
vulnerabilities without a fix available.

REFERENCES:

§ https://www.dni.gov/files/NCSC/documents/supplychain/Software_Supply_Chain_Attacks.pdf
§ https://www.npmjs.com/advisories/1096886
§ https://cwe.mitre.org/data/definitions/1395.html

https://www.dni.gov/files/NCSC/documents/supplychain/Software_Supply_Chain_Attacks.pdf
https://www.npmjs.com/advisories/1096886
https://cwe.mitre.org/data/definitions/1395.html

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

12

LONG-TERM REMEDIATION

Long-term remediations are reserved for low impact vulnerabilities that should be prioritized for
remediation after all other vulnerabilities are addressed – usually around 45 days from the delivery of
this report. These finding are either very hard to exploit or will have minimal impact to users and
business operations. Many of the findings in this section will become the responsibility of an ongoing
vulnerability management program and will be addressed as software updates are released or
organizations grow.

Finding ID Description Severity Remediation

ARCO-2024-02 Unexploitable DOM-based XSS Informational N/A

ARCO-2024-03 getActiveKeyfile and freeDecryptedWallet function usage Informational N/A

ARCO-2024-04 React State kept in-memory after use Informational N/A

ARCO-2024-05 HTML a tag with REL properties misspelled Informational Yes

ARCO-2024-06 Suggested Hardening Changes Informational N/A

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

13

ARCO-2024-02: UNEXPLOITABLE DOM-BASED XSS

VULNERABILITY RATING: Informational
CVE/CWE: CWE-79: Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
DISCOVERY METHOD: Manual Testing

REMEDIATION STATUS:
This section of the report is reserved for future use to document remediation steps and status.

DESCRIPTION:
In DOM-based XSS, the client performs the injection of XSS into the page (vs server-side rendering
performing the injection). DOM-based XSS generally involves server-controlled, trusted script that is sent
to the client, such as JavaScript that performs sanity checks on a form before the user submits it. If the
server-supplied script processes user-supplied data and then injects it back into the web page (such as
with dynamic HTML), then DOM-based XSS is possible.

The ArConnect browser extension codebase includes the user of elem.innerHTML to extract an img
tag from a Third-Party XML RSS feed (Permaweb News Feed - see Reference link). If the Permaweb
News Feed website were compromised an attacker could change the XML RSS feed to include
potentially malicious HTML tags to perform an XSS attack. This would affect all ArConnect browser
extension users that click on the Explore button within the browser extension.

ANALYSIS:
Due to the XSS being blocked by the Content Security Policy set within the ArConnect browser extension,
this attack vector was not possible to exploit. If this XSS attack vector were not blocked, it may be
possible to trick the user into giving the malicious actor their private key and password, or abuse other
functionality of the browser extension.

REPRODUCTION STEPS:
Verify within the build/chrome-mv3-dev/manifest.json file the following entry exists:
NOTE: in the dev build http://localhost will also be included. Even with this present the XSS POC
failed

...SNIPPET...

"content_security_policy": {
 "extension_pages": "script-src 'self'; object-src 'self';"
}

...SNIPPET...

RECOMMENDATION:
Currently no code changes are required, however there is a suggestion which would remove the
innerHTML usage altogether. This is an informational finding to highlight the importance of the Content

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

14

Security Policy setting within the build/chrome-mv3-dev/manifest.json file within the ArConnect
browser extension. Consider adding developer documentation and/or comments where appropriate to
ensure the Content Security Policy is not modified to allow an XSS attack such as this.

The following example shows how to potentially avoid using the innerHTML function to extract the
same information from the RSS feed. This would harden the code further by using the DOMParser web
api.

function loadRSSFeed(url) {
 fetch(url)
 .then(response => response.text()) // Get the response and convert it
to text
 .then(str => {
 // Parse the XML string
 const parser = new DOMParser();
 const xmlDoc = parser.parseFromString(str, "text/xml");

 // Navigate through the XML document
 const items = xmlDoc.getElementsByTagName("item");
 if (items.length > 1) {
 // Get the second item
 const secondItem = items[1];

 // Extract the <description> element
 const description =
secondItem.getElementsByTagName("description")[0];
 if (description) {
 const descHtml = description.textContent;

 // Further parse the description to extract the tag
 const htmlDoc = parser.parseFromString(descHtml,
"text/html");
 const img = htmlDoc.getElementsByTagName("img")[0];

 // Use the `img` value
 if (img) {
 console.log("Image src:", img.src); // Output the src
of the tag
 } else {
 console.log("No image found in the description.");
 }
 } else {
 console.log("No description tag found.");
 }
 } else {
 console.log("No items found in the feed.");
 }
 })
 .catch(error => {
 console.error("Failed to load RSS feed:", error);
 });
}

// Example usage

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

15

loadRSSFeed('https://permaweb.news/feed');

REFERENCES:

§ https://cwe.mitre.org/data/definitions/79.html
§ https://permaweb.news/feed
§ https://developer.chrome.com/docs/extensions/reference/manifest/content-security-policy
§ https://developer.mozilla.org/en-US/docs/Web/API/DOMParser/parseFromString

https://cwe.mitre.org/data/definitions/79.html
https://permaweb.news/feed
https://developer.chrome.com/docs/extensions/reference/manifest/content-security-policy
https://developer.mozilla.org/en-US/docs/Web/API/DOMParser/parseFromString

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

16

ARCO-2024-03: GETACTIVEKEYFILE AND FREEDECRYPTEDWALLET FUNCTION
USAGE

VULNERABILITY RATING: Informational
CVE/CWE: CWE-316: Cleartext Storage of Sensitive Information in Memory
DISCOVERY METHOD: Manual Testing

REMEDIATION STATUS:
This section of the report is reserved for future use to document remediation steps and status.

DESCRIPTION:
JavaScript engines have unpredictable memory-management practices, with unpredictable garbage
collection practices. Accordingly, any time a sensitive value is moved into memory, it will stay there until
the JavaScript engines determine that it is no longer in use and frees the memory for re-use (see
References). Even at this point, the memory is not overwritten and will retain the value until it is
overwritten by other data. Accordingly, sensitive data held in-memory by JavaScript is at-risk if process
memory is dumped.

getActiveKeyfile and freeDecryptedWallet are JavaScript functions within the ArConnect
browser extension. These functions are used to get the current private key and then free the memory to
reduce the chance of leaking the users private key during a memory dump. This was added in the last
security review to reduce the amount of time the sensitive information was kept in memory. The
suggestion here is to continue to use these functions but consider switching to a try/catch/finally
code pattern when these functions are called. In some cases there is potential for a JavaScript await
call to throw an error which could prevent freeDecryptedWallet from being executed. Switching to a
try/catch/finally pattern would fit in most use-cases and ensure that the freeDecryptedWallet
function is called irrespective of any errors.

ANALYSIS:
The cleartext storage of sensitive information in the browser extension's memory can lead to the
disclosure of sensitive information such as the private key of the wallet. Attackers who gain access to a
user's system, through malware or other means, could extract this sensitive data directly from memory
eg, by creating a memory dump.

REPRODUCTION STEPS:
The following are commands useful for finding all references in the codebase to the two functions:

grep -rli "freedecryptedwallet" src
src/subscriptions/payments.ts
src/components/dashboard/subsettings/WalletSettings.tsx
src/components/arlocal/Transaction.tsx
src/lib/avatar.ts
src/api/modules/signature/signature.background.ts
src/api/modules/dispatch/dispatch.background.ts
src/api/modules/dispatch/allowance.ts
src/api/modules/private_hash/private_hash.background.ts

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

17

src/api/modules/sign_data_item/sign_data_item.background.ts
src/api/modules/public_key/public_key.background.ts
src/api/modules/verify_message/verify_message.background.ts
src/api/modules/encrypt/encrypt.background.ts
src/api/modules/sign_message/sign_message.background.ts
src/api/modules/sign/fee.ts
src/api/modules/sign/sign.background.ts
src/api/modules/decrypt/decrypt.background.ts
src/wallets/index.ts
src/wallets/encryption.ts
src/wallets/auth.ts
src/routes/popup/send/auth.tsx
src/routes/popup/send/confirm.tsx

NOTE: this list has parity with the above freedeecryptedwallet list, with the
noted exception of the aoToken/ao.ts file
grep -rli "getActiveKeyfile" src
src/subscriptions/payments.ts
src/components/arlocal/Transaction.tsx
src/lib/avatar.ts
src/api/modules/signature/signature.background.ts
src/api/modules/dispatch/dispatch.background.ts
src/api/modules/private_hash/private_hash.background.ts
src/api/modules/sign_data_item/sign_data_item.background.ts
src/api/modules/public_key/public_key.background.ts
src/api/modules/verify_message/verify_message.background.ts
src/api/modules/encrypt/encrypt.background.ts
src/api/modules/sign_message/sign_message.background.ts
src/api/modules/sign/fee.ts
src/api/modules/sign/sign.background.ts
src/api/modules/decrypt/decrypt.background.ts
src/wallets/index.ts
src/tokens/aoTokens/ao.ts
src/routes/popup/send/auth.tsx
src/routes/popup/send/confirm.tsx

RECOMMENDATION:
Consider changing to a pattern such as the following:

try{
 const decryptedWallet = await getActiveKeyfile().catch((e) => {
 isNotCancelError(e);

 // if there are no wallets added, open the welcome page
 browser.tabs.create({ url: browser.runtime.getURL("tabs/welcome.html") });

 throw new Error("No wallets added");
 });

 // ... do things with the decrypted wallet here
 // eg:
 await submitTx(convertedTransaction, arweave, type);

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

18

}catch(e){
 // ... console.log out the error or other error handling
}finally{
 // finally, remove wallet from memory
 freeDecryptedWallet(decryptedWallet);
}

Consider the try/catch/finally pattern to the following files:

§ src/api/modules/sign/sign.background.ts
§ src/lib/avatar.ts line 56
§ src/routes/popup/send/auth.tsx lines 253, 319
§ src/subscriptions/payments.ts
§ src/routes/popup/send/confirm.tsx

Consider adding the following comments, for future reviews:

§ src/tokens/aoTokens/ao.ts consider adding comment as to this not needing the
freeDecryptedWallet, but would be required after sendAoTransfer is used (related to
src/routes/popup/send/confirm.tsx usage)

REFERENCES:

§ https://cwe.mitre.org/data/definitions/316.html
§ https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_management

https://cwe.mitre.org/data/definitions/316.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_management

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

19

ARCO-2024-04: REACT STATE KEPT IN-MEMORY AFTER USE

VULNERABILITY RATING: Informational
CVE/CWE: CWE-316: Cleartext Storage of Sensitive Information in Memory
DISCOVERY METHOD: Manual Testing

REMEDIATION STATUS:
This section of the report is reserved for future use to document remediation steps and status.

DESCRIPTION:
JavaScript engines have unpredictable memory-management practices, with unpredictable garbage
collection practices. Accordingly, any time a sensitive value is moved into memory, it will stay there until
the JavaScript engines determine that it is no longer in use and frees the memory for re-use (see
References). Even at this point, the memory is not overwritten and will retain the value until it is
overwritten by other data. Accordingly, sensitive data held in-memory by JavaScript is at-risk if process
memory is dumped.

The React useState hook is used throughout the browser extension for storing various user input and
other values. This finding considers that those values may stay in memory longer than necessary, which
could create a situation where a memory dump would reveal sensitive information.

ANALYSIS:
The cleartext storage of sensitive information in the browser extension's memory can lead to the
disclosure of sensitive information such as the private key of the wallet. Attackers who gain access to a
user's system, through malware or other means, could extract this sensitive data directly from memory
(e.g. by creating a memory dump).

REPRODUCTION STEPS:
The following list highlights the files with React state which stores sensitive information:

§ src/components/SeedInput.tsx consider clearing words state after use
§ src/routes/auth/connect.tsx line 114 reset the passwordInput.state after use
§ src/components/dashboard/subsettings/AddWallet.tsx line 151 reset the

passwordInput.state after use
§ src/routes/auth/allowance.tsx line 80 reset the passwordInput.state after use
§ src/routes/auth/unlock.tsx line 30 reset the passwordInput.state after use
§ src/routes/popup/unlock.tsx line 44 reset the passwordInput.state after use
§ src/routes/popup/send/auth.tsx line 275 reset the passwordInput.state after use
§ src/routes/popup/send/confirm.tsx line 420 reset the passwordInput.state after

use
§ src/routes/welcome/load/password.tsx line 36 reset the passwordInput.state and

validPasswordInput.state after use

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

20

RECOMMENDATION:
Consider using the setState function declared for the state variables to a new default value such as
AAAAAAAAAAAAAAAAAAAAAAAAA.

An example React component which would allow the user to enter a Password and then overwrite the
password after the user pressed a Submit button is shown below. Once the password value is finished
being used, the state is overwritten with a default value.

import React, { useState } from 'react';

function PasswordForm() {
 // Create a state variable 'password' and a function to update it
 const [password, setPassword] = useState('');

 // Function to handle the input change
 const handleInputChange = (event) => {
 setPassword(event.target.value);
 };

 // Function to handle the button click for form submission
 const handleSubmit = () => {
 alert(`Password Submitted: ${password}`); // Alert the submitted password
(or handle as needed)

 // Suggested Mitigation:
 // once finished using the password, overwrite it's value to all 'A'
characters, with the same length as before
 setPassword(prev => {
 return 'A'.repeat(prev.length)
 })
 };

 return (
 <div>
 <input
 type="password"
 value={password}
 onChange={handleInputChange} // Update state on input change
 placeholder="Enter your password"
 />
 <button onClick={handleSubmit}>Submit</button> // Button to submit the
password
 </div>
);
}

export default PasswordForm;

REFERENCES:

§ https://cwe.mitre.org/data/definitions/316.html
§ https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_management

https://cwe.mitre.org/data/definitions/316.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_management

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

21

ARCO-2024-05: HTML A TAG WITH REL PROPERTIES MISSPELLED
(REMEDIATED)

VULNERABILITY RATING: Informational
CVE/CWE: CWE-1022: Use of Web Link to Untrusted Target with window.opener

Access
DISCOVERY METHOD: Manual Testing

REMEDIATION STATUS:
Remediation testing was performed on May 3, 2024, utilizing the source code from commit
https://github.com/arconnectio/ArConnect/pull/272/commits/9e34137462bad82d95f5692fbbdcdc473
4b8a3b6. All instances within the source code where the rel properties were misspelled have been
addressed, fully remediating this finding.

DESCRIPTION:
An HTML <a> tag is used to create hyperlinks in web documents, allowing users to navigate from one
web page or resource to another. When the <a> tag includes the rel attribute with the values noopener
and noreferrer, it enhances security and privacy. The noopener value prevents the newly opened
page from being able to access the originating page's window object via window.opener, thereby
safeguarding against malicious scripts. The noreferrer value stops the browser from sending the
HTTP referrer header to the new page, ensuring that the destination page does not receive any
information about the source page. This combination is particularly useful for links to external sites,
improving security and user privacy.

ANALYSIS:
When a user clicks a link to an external site ("target"), the target="_blank" attribute causes the target
site's contents to be opened in a new window or tab, which runs in the same process as the original
page. The window.opener object records information about the original page that offered the link. If an
attacker can run a script on the target page, then they could read or modify certain properties of the
window.opener object, including the location property - even if the original and target site are not the
same origin. An attacker could modify the location property to automatically redirect the user to a
malicious site, e.g. as part of a phishing attack. Since this redirect happens in the original window/tab
(which is not necessarily visible, since the browser is focusing the display on the new target page) the
user might not notice any suspicious redirection.

REPRODUCTION STEPS:

§ src/routes/popup/token/[id].tsx line 523 appears to have a typo for the rel properties
of the a tag with rel="noopen noreferer" which should be rel="noopener
noreferrer".

RECOMMENDATION:

§ Set the rel attribute to rel="noopener noreferrer" for all HTML a tags

https://github.com/arconnectio/ArConnect/pull/272/commits/9e34137462bad82d95f5692fbbdcdc4734b8a3b6
https://github.com/arconnectio/ArConnect/pull/272/commits/9e34137462bad82d95f5692fbbdcdc4734b8a3b6

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

22

REFERENCES:

§ https://github.com/arconnectio/ArConnect/blob/35cce3b9312915bac93fda570115ad7386bbdbf
e/src/routes/popup/token/%5Bid%5D.tsx#L523

§ https://cwe.mitre.org/data/definitions/1022.html

https://github.com/arconnectio/ArConnect/blob/35cce3b9312915bac93fda570115ad7386bbdbfe/src/routes/popup/token/%5Bid%5D.tsx#L523
https://github.com/arconnectio/ArConnect/blob/35cce3b9312915bac93fda570115ad7386bbdbfe/src/routes/popup/token/%5Bid%5D.tsx#L523
https://cwe.mitre.org/data/definitions/1022.html

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

23

ARCO-2024-06: SUGGESTED HARDENING CHANGES

VULNERABILITY RATING: Informational
CVE/CWE: N/A
DISCOVERY METHOD: Manual Testing

REMEDIATION STATUS:
This section of the report is reserved for future use to document remediation steps and status.

DESCRIPTION:
This informational finding aims to highlight some potential changes that could harden the ArConnect
browser extension further. These changes may impact functionality of the browser extension in some
circumstances.

AFFECTED ASSETS:

ANALYSIS:
The externally_connectable property within the manifest.json of the browser extension
declares which extensions and web pages can connect to your extension using runtime.connect()
and runtime.sendMessage(). The default value is to allow all extensions can connect, but no web
pages can connect. Disabling this functionality would disabled Third-Party browser extensions to directly
utilize functionality of the ArConnect browser extension.

REPRODUCTION STEPS:

1. Run the yarn dev:chrome command
2. View the contents of the build/chrome-mv3-dev/manifest.json file. Note that no

externally_connectable property is declared, which falls back to a default of allowing
connections from other browser extensions..

RECOMMENDATION:
Consider setting "externally_connectable":{} within the build/chrome-mv3-
dev/manifest.json

REFERENCES:

§ https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/manifest.json/externally_connectable

§ https://developer.chrome.com/docs/extensions/reference/manifest/externally-connectable

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/externally_connectable
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/externally_connectable
https://developer.chrome.com/docs/extensions/reference/manifest/externally-connectable

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

24

METHODOLOGY

The Secure Code Audit was conducted in three overall phases. The first and second phase were each
performed purely from a manual secure source-code review, with in-depth analysis of discovered
vulnerabilities. The third phase consisted of attempts to actively exploit previously identified
vulnerabilities.

PHASE 1 – OVERALL SECURE CODE REVIEW

Open Security utilizes a source-code audit methodology adapted from the OWASP Code Review Guide
(https://owasp.org/www-project-code-review-guide/). Accordingly, a detailed checklist is provided in
Appendix C – ArConnect – Secure Code Review Checklist.xlsx.

The first step taken is to review the code for familiarization of the components involved, the general
software patterns and technologies involved. This includes looking over every line of code within the
ArConnect GitHub repository, noting any complicated or difficult to understand code for further review.
This initial review aids in the direction of any POCs attempted (see Phase 3 – Attempted Exploitation and
Creation of POC’s for Identified). Identification of commonly used files for tasks such as decrypting the
users private key are also noted.

Once the overall familiarization is complete, the review shifted into a targeted search approach whereby
the identified important functions were further scrutinized, reviewing the definition of these functions
and their usage throughout the codebase. Additional searches for commonly vulnerable and/or insecure
Web APIs were also conducted. VsCode was utilized as the IDE for these code reviews as it helps to
apply more context to the strongly typed code and makes code navigation efficient. Common Linux
utilities such as grep were also used for finding information within the source code.

PHASE 2 – CODE REVIEW OF CHANGES SINCE LAST REVIEW

GitHub provides comparison functionality within their website wherein a user can compare code
changes between two branches. This was utilized to review the code changes since the last secure code
review and subsequent remediation of the previous findings. See Appendix B: Detailed Scope for the
GitHub compare URL used.

Utilizing this compare functionality helped narrow down specific changes and areas to further investigate
from the previous review. During this phase more notes were taken, ensuring focus on new areas of code
development – which are more likely to have security vulnerabilities than previously reviewed code.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

25

Figure 2 – GitHub compare feature showing some of the changes from the last remediation commit

PHASE 3 – ATTEMPTED EXPLOITATION AND CREATION OF POC’S FOR IDENTIFIED
VULNERABILITIES

This phase consists of attempting to exploit some potentially vulnerable code paths by building and
installing a development version of the ArConnect browser extension as well as making modifications to
prove any vulnerabilities.

1. An exploit was attempted with injecting malicious payloads into an SVG loaded on the Explore
page, attempting to provide a XSS attack vector. The exploit attempt failed due to Content
Security Policy settings.

2. An exploit was attempted with making a malicious Subscription via both a malicious JavaScript
URL for the Management URL, as well as a malicious payload in an SVG file as an XSS attack
vector. This exploit attempt also failed.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

26

Figure 3 – Yarn install command is used to prepare all the necessary open-source packages used for building the ArConnect

browser extension

Figure 4 – Yarn dev:chrome is the command used to create a development build for Google Chrome, shown here is the

successful execution of this command.

Figure 5 – Once the ArConnect browser extension is installed and running, after setting up the wallet and password this is the

main view. This image shows the successful operation of the browser extension as used for the security review.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

27

POC 1 – Explore Page PermaWeb News RSS Feed XSS Injection Attempt

Modifying the source code to inject a custom response (to simulate the Permaweb News feed Third-
Party website being modified by malicious actors) was tested to attempt to perform a DOM-based XSS
via the innerHTML usage within the ArConnect browser extension. While the SVG was loaded, the XSS
attempt was not executed due to the Content Security Policy setting within the manifest.json. This
was the basis of ARCO-2024-02 - Unexploitable DOM-based XSS suggestion. The following screenshots
highlight the code changes and POC tested.

Figure 6 – VsCode git diff of the permaweb_news.ts file which was modified with a POC of a malicious payload which was
attempted for the XSS attack. The main part to focus on is the ‘’ tag that was inserted.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

28

Figure 7 – SVG files can contain malicious payloads which attempt to execute Javascript. This is a POC that was used during

the testing. This SVG draws a rectangular blue box when rendered.

Figure 8 – Google Chrome’s Content Security Policy (applied by the manifest.json) is shown here blocking the XSS POC attempt.

This screenshot also shows the SVG was loaded and rendered.

Figure 9 – The ArConnect browser extension is shown here after the User has clicked on the Explore tab. The SVG was rendered,

proving the malicious SVG file was loaded properly however the XSS payload was blocked.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

29

POC 2 – XSS Attempts Within a Malicious Subscription

With the new Subscription feature, a POC was tested to ensure that an XSS attack was not possible
using either an SVG with malicious payload for the Icon or an XSS attack via the
subscriptionManagementUrl. All attempted XSS attacks were unsuccessful due to the security
boundary enforcement within the browser extension sandbox. The following screenshots highlight the
code changes and POC tested.

Figure 10 – VsCode git diff showing the changes to the subscriptions/index.ts file that were used as a potentially malicious

payload for the applicationIcon and subscriptionManagementUrl properties of a subscription.

Figure 11 - SVG files can contain malicious payloads which attempt to execute Javascript. This is a POC that was used during
the testing. This SVG draws a rectangular blue box when rendered.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

30

Figure 12 – A Python3 http server console output is shown here, which was used to host the xss.svg image used in the various

locations within the XSS tests.

Figure 13 – Google Chrome developer console is shown rejecting the execution of the Javascript XSS payload due to the
security restrictions placed on the extension.

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

31

APPENDIX A: SECURITY TEAM SNAPSHOT

Passionate and forward-thinking, our team brings decades of combined technical experience as top-tier
researchers, penetration testers, application security experts, and more. Drawing from experience in the
US military and leading technology firms, understands the importance of information security and
appreciates the opportunity to have worked on this engagement.

VANCE WALSH | SECURITY ENGINEER

Leveraging a long-time software engineer career, Vance has applied his vast knowledge of various
software technologies into a successful cybersecurity career. He’s worked in various software
projects ranging from traditional website development, blockchain dApp development, embedded
systems as well as implementing Ai technologies.

Vance.Walsh@OpenSecurity.com

JOSHUA CHRISTMAN | OSCP, OSCE | CHIEF OPERATIONS OFFICER

Josh Christman graduated from the Air Force Academy in 2013 with a BS in Computer Engineering
and Computer Science with a focus on Cyberwarfare. Following USAFA, he proceeded to get his
Master of Science in Computer Engineering from the Air Force Institute of Technology, focusing on
Artificial Intelligence. His Air Force career then continued into Offensive Cyber Operations, working
for the premier offensive cyber unit in the Air Force. Since transitioning out of the Air Force he has
run Red Teams, Application Security Teams, and Vulnerability Management Programs in the fintech
industry. He is now responsible for all security engineering efforts at Open Security.

Joshua.Christman@OpenSecurity.com | 719.375.9355

ArConnect Source Code Audit: Community Labs | Q2

737.270.9486 | contact@opensecurity.com
OpenSecurity.com

32

APPENDIX B: DETAILED SCOPE

URLS:
The following are the URLs of interest throughout this quarter’s assessment.

§ https://github.com/arconnectio/ArConnect/tree/feat/arc-281-subscription-api
§ https://github.com/arconnectio/ArConnect/compare/df999c5..35cce3b
§ https://permaweb.news/feed
§ https://chromewebstore.google.com/detail/arconnect/einnioafmpimabjcddiinlhmijaionap

https://github.com/arconnectio/ArConnect/tree/feat/arc-281-subscription-api
https://github.com/arconnectio/ArConnect/compare/df999c5..35cce3b
https://permaweb.news/feed
https://chromewebstore.google.com/detail/arconnect/einnioafmpimabjcddiinlhmijaionap

