

Community Labs: ArConnect
Source Code Audit and Penetration Test

Security Review
	

	

Joshua Christman | Chief Operations Officer

Last Revision: 31 July 2023

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 2 of 22 @_OpenSecurity_

1 TABLE OF CONTENTS

1	 TABLE OF CONTENTS ... 2	

2	 EXECUTIVE SUMMARY .. 3	

2.1	 RECOMMENDATIONS ... 3	

2.1.1	 RECOMMENDATIONS FOR SUSTAINMENT ... 3	

2.1.2	 RECOMMENDATIONS FOR REMEDIATION .. 3	

2.2	 SUMMARY OF FINDINGS ... 4	

2.2.1	 KEY FINDINGS .. 4	

2.2.2	 CURRENT RISK ASSESSMENT ... 4	

3	 RISK METHODOLOGY ... 5	

3.1	 INFORMATION SECURITY RISK RATING SCALE ... 5	

3.1.1	 RISK RATING KEY ... 5	

4	 SECURITY ROADMAP .. 6	

4.1	 FINDINGS .. 6	

4.1.1	 SHORT-TERM REMEDIATION ... 7	

4.1.2	 MID-TERM REMEDIATION .. 8	

4.1.3	 LONG-TERM REMEDIATION ... 13	

5	 METHODOLOGY ... 20	

6	 CONTACT INFORMATION .. 20	

6.1	 SECURITY TEAM SNAPSHOT .. 20	

7	 APPENDIX A – SCOPE ... 21	

8	 APPENDIX B – SECURE CODE CHECKLIST .. 22	

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 3 of 22 @_OpenSecurity_

2 EXECUTIVE SUMMARY
Many projects in the Web3 ecosystem focus intensely on the security of their blockchain ecosystems. It has
become increasingly apparent, however, that further attention needs to be paid to traditional web2 security, as
it is foundational to the Web3 ecosystem. Community Labs’ ArConnect Wallet provides a Browser Extension that
interacts directly with the Arweave protocols and gateways to make a more seamless user experience.

The testing period started on 03 July 2023 and ended on 17 July 2023 and consisted of auditing the Source
Code for vulnerabilities, along with testing those potential vulnerabilities through dynamic testing.

Thorough examination of the source code showed strong coding practices, with only one High-severity finding
in the extension. While there are some hardening measures that have been identified during testing, the strong
technology stack and architecture mitigate several vulnerabilities, allowing for those issues to be mitigated on a
longer timeline. Community Labs exhibited strong motivation to address identified issues, patching all 5
findings (including Informational findings) within 2 weeks of initial report delivery.

2.1 RECOMMENDATIONS

The architecture and coding practices leave little room for improvement with the ArConnect browser extension.
Implementing a patching cadence where Open Source packages are routinely audited and updated for security
vulnerabilities will close the single High-severity finding, which introduced by a third party. Open Security also
recommends security testing of new features as they are developed in order to proactively identify any
potential regressions in security introduced by these features.

2.1.1 RECOMMENDATIONS FOR SUSTAINMENT

• Continue to architect the application in a secure way, with a strong permissions model.
• Proactive engagement with security vendors allows Community Labs to find vulnerabilities earlier in the

development lifecycle. Continuation of this practice can prevent future breaches.

2.1.2 RECOMMENDATIONS FOR REMEDIATION

• Implement a patching cadence for Open Source dependencies.
• Add data validation to all untrusted data sources.
• Consider password complexity and age with regards to the security of the stored data. Implement

password policies that address the sensitivity of the data balanced against the security of the password.

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 4 of 22 @_OpenSecurity_

2.2 SUMMARY OF FINDINGS

During this Vulnerability Assessment one new High- and one new Medium-severity vulnerability was
identified in the Browser Extension, while three Informational findings were reported. All 5 identified
vulnerabilities have been addressed and re-tested – they are considered to be fully remediated.

Findings grouped by risk severity:

Critical 0 → 0

High 1 → 0

Moderate 1 → 0

Low 0 → 0

Informational 3 → 0	

2.2.1 KEY FINDINGS

During the Web Application Assessment, 0 critical-risk and 1 high-risk findings were discovered. Findings are
listed once even if they pertain to multiple systems across the network and vulnerabilities of common criteria
are grouped together.

• The Vulnerabilities in Open Source Dependencies finding is based on the presence of vulnerabilities
reported by the npm audit command, which utilizes public vulnerability databases to identify issues
introduced by third-party dependencies. Performing automated patching (which does not update breaking
changes) fixes many of the identified vulnerabilities, while leaving a High-severity finding that must be
manually addressed. This finding was remediated and re-tested on 31 July 2023.

Finding # Description Severity Remediation Status

Finding 1 Vulnerabilities in Open Source Dependencies High Remediated

2.2.2 CURRENT RISK ASSESSMENT

Open Security assesses your overall security risk to be: Low

Low Medium High Critical

Critical
0

High
1

Medium
1

Low
0

Informational
3

Critical

High

Medium

Low

Informational

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 5 of 22 @_OpenSecurity_

3 RISK METHODOLOGY
Information security is not about eliminating risk. It is founded upon the science and discipline of risk
management. This is an important distinction because computer systems are inherently designed to share
information while security strives to guard it. Therefore, it is management’s role to weigh the benefits of
information sharing with the potential security risks of doing so, all while enabling the organization to achieve
its objectives.

3.1 INFORMATION SECURITY RISK RATING SCALE

To effectively evaluate the security posture of a client’s network, Open Security uses the Information Security
Risk Rating Scale shown below. This scale is based on the open-industry Common Vulnerability Scoring
System (CVSS) against the Common Vulnerabilities and Exposures (CVE) Dictionary maintained by the
National Cybersecurity Federally Funded Research and Development Center (FFRDC) with funding from the
National Cyber Security Division of the US Department of Homeland Security. This base CVSS score, the
likelihood of exploitation, and the impact of exploitation are all considered to determine the overall risk
presented by the vulnerability.

3.1.1 RISK RATING KEY

When evaluating remediation timelines for your environment, Critical network and system vulnerabilities
should be addressed as quickly as feasible. The bulk of effort will likely involve those rated as High and
Medium. Open Security recommends that these risks be remediated as soon as possible after report delivery.
While it is of vital importance to identify solutions to all risks affecting the network, those rated Low can be
approached methodically, in line with general information security best practices without accepting significant
risk of severe financial or data loss. Informational vulnerabilities are meant to point out accepted best
practices but are not included on the chart below because they are either unexploitable in the environment or
an exploitation would have no impact on the environment.

Critical risks: very high likelihood of exploitation
and possibility of catastrophic financial losses.

High risks: high likelihood of exploitation with the
possibility of significant financial losses.

Medium risks: average likelihood of exploitation
with the possibility of material financial losses.

Low risks: below average likelihood of exploitation
with the possibility of limited financial losses.

Informational risks: below average likelihood of
exploitation with little to no impact as a result.

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 6 of 22 @_OpenSecurity_

4 SECURITY ROADMAP
To strengthen overall information security, Open Security has provided a prospective security roadmap below.
The timeline is broken into short-, mid-, and long-term remediation efforts to help security teams prioritize their
work. Recommendations are based only on the information gained from this engagement and may not work
for all security programs – though they may be a good starting point for planning discussions.

The roadmap takes the overall severity of each finding into account, alongside an estimate of the resources
required to address each finding, in order to recommend short-, mid-, and long-term remediation efforts. In
other words, a low-risk finding may be recommended for short-term remediation if minimal effort is required to
generate a fix, while high or medium risk findings may be prioritized lower if substantial resources must be
committed to address a vulnerability. Critical findings should almost always be addressed in the short term in
some way, even if only a temporary stopgap is used to reduce risk while a more permanent solution is
employed in the long term.

4.1 FINDINGS

Finding # Description Severity Remediation Status

Finding 1 Vulnerabilities in Open Source Dependencies High Remediated

Finding 2 Weak Password Policy Medium Remediated

Finding 3 Decrypted Wallet Details Held In-Memory Informational Remediated

Finding 4 Potential DOM-Based Cross-Site Scripting Vulnerability Informational Remediated

Finding 5 No Input Validation Informational Remediated

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 7 of 22 @_OpenSecurity_

4.1.1 SHORT-TERM REMEDIATION

Short-term remediations should be prioritized for implementation in the next 21 days. These findings typically
rank higher in severity and will address the most dangerous vulnerabilities to an organization. They also may
be included if there appear to be risks related to maintaining mandatory compliance or other regulatory
requirements, as failing those audits may impact continued business operations.

No findings were discovered that were of Critical Severity, which is an outstanding result. This
indicates an excellent short-term security posture for Community Labs.

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 8 of 22 @_OpenSecurity_

4.1.2 MID-TERM REMEDIATION

Mid-term remediations should be prioritized for implementation in 21 - 45 days. These findings are usually
categorized by a cost-benefit analysis of security impact and effort to implement. A high risk finding with
significant resource and planning investment may be included here – though every effort to speed up
remediation should be made if technical or procedural circumstances allow.

Finding # Description Severity Remediation Status

Finding 1 Vulnerabilities in Open Source Dependencies High Remediated

Finding 2 Weak Password Policy Medium Remediated

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 9 of 22 @_OpenSecurity_

Finding 1: Vulnerabilities in Open Source Dependencies (Remediated)

Vulnerability Rating: High

Discovery Method: Manual testing

Remediation Status:

This finding was re-tested on 31 July 2023, with 0 vulnerabilities reported by the yarn audit command. This
finding is considered to be fully remediated.

Description:

When developing software, the security of its dependencies (i.e. the Software Supply Chain) is a significant
attack surface. The Supply Chain can affect a product's security at any time in the development process by
attacking the developers' tools themselves with malware or by simply introducing vulnerabilities into the
software. NPM dependencies in particular, can be challenging to keep up-to-date due to the complex
dependency relationships that develop in the NodeJS ecosystem.

Affected Assets:

• package.json

Analysis:

The ArConnect Wallet Browser Extension has many out-of-date dependencies, with 6 Critical-, 22 High-, 31
Moderate-, and 7 Low-severity vulnerabilities being reported by the yarn audit command. The impact of
these vulnerabilities is highly variable, thought the Critical vulnerabilities include dangerous issues such as
JavaScript VM sandbox escapes with published Proofs-of-Concept on Github (see Github Advisory in
References).

Reproduction Steps:

Run the command yarn audit, noting the response:

66 vulnerabilities found, 7 Low | 31 Moderate | 22 High | 6 Critical

Recommendation:

Follow the steps below to automatically apply non-breaking changes/updates from the NPM registry. For any
vulnerabilities that are not fixed automatically, replacement packages or manual updates may be required in
order to deal with breaking changes.

1. Run the command yarn audit, noting the response (66 vulnerabilities found, 7 Low | 31
Moderate | 22 High | 6 Critical)

2. As the yarn command does not have a fix subcommand like the npm CLI, utilize npm to apply fixes
automatically. Run the following commands:

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 10 of 22 @_OpenSecurity_

o npm i --package-lock-only --legacy-peer-deps
o npm audit fix --legacy-peer-deps

3. After executing these commands, the vulnerabilities are reduced to 7 vulnerabilities (2 low, 4 moderate, 1

high), which will need to be dealt with manually due to breaking changes and/or vulnerabilities without a fix
available.

References:

• https://www.dni.gov/files/NCSC/documents/supplychain/Software_Supply_Chain_Attacks.pdf
• https://github.com/advisories/GHSA-whpj-8f3w-67p5

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 11 of 22 @_OpenSecurity_

Finding 2: Weak Password Policy (Remediated)

Vulnerability Rating: Medium

Discovery Method: Manual testing

Remediation Status:

This finding was re-tested on 31 July 2023. All recommendations were implemented, with a password
expiration of 6 months and a minimum strength of “3” for the check-password-strength package. This
finding is considered to be fully remediated.

Description:

When encrypting/decrypting the ArConnect wallet, an encryption key is derived from cryptographically secure,
randomly generated values and a user-provided password. This is then utilized to encrypt the wallet. When
decrypting the same wallet, only the user-provided password is required. This effectively makes the strength of
the user-provided password be the strength of the encryption key.

The password requirement is set by a function in generator.ts (Figure 1), where it checks the password
strength utilizing an NPM package called check-password-strength (see References). The check is set to
only require a "Weak" password, which requires a minimum length of 6 characters and 2 different sets of
characters (lowercase and special characters, for example).

Figure 1 – checkPasswordValid Function Source Code

In addition to this, no password expiration policy is enforced. While not strictly required, a password expiration
on a yearly basis may strengthen a user's security stance and prevent an attacker from performing passwords
stuffing attacks when trying to decrypt a user's keyfile.

Affected Assets:

• ArConnect/src/wallets/generator.ts

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 12 of 22 @_OpenSecurity_

Analysis:

With a weak password requirement, it may be possible to brute force decrypt a keyfile that is captured via other
means, such as malware or local access to a computer.

Recommendation:

• Enforce a strong password requirement by updating the checkPasswordValid function to require a
strength.id === 3

• Consider implementing a password expiration mechanism wherein a user is required to rotate their
password on a periodic basis

References:

• https://github.com/deanilvincent/check-password-strength#object-result

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 13 of 22 @_OpenSecurity_

4.1.3 LONG-TERM REMEDIATION

Long-term remediations are reserved for low impact vulnerabilities that should be prioritized for remediation
after all other vulnerabilities are addressed – usually around 45 days from the delivery of this report. These
finding are either very hard to exploit or will have minimal impact to users and business operations. Many of
the findings in this section will become the responsibility of an ongoing vulnerability management program and
will be addressed as software updates are released or organizations grow.

Finding # Description Severity Remediation Status

Finding 3 Decrypted Wallet Details Held In-Memory Informational Remediated

Finding 4 Potential DOM-Based Cross-Site Scripting Vulnerability Informational Remediated

Finding 5 No Input Validation Informational Remediated

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 14 of 22 @_OpenSecurity_

Finding 3: Decrypted Wallet Details Held In-Memory (Remediated)

Vulnerability Rating: Informational

Discovery Method: Manual testing

Remediation Status:

This finding was re-tested on 31 July 2023. Community Labs developers implemented a
freeDecryptedWallet function that overwrites the sensitive values in memory when they are no longer
needed in order to prevent third-party malware from reading the values from memory. The function is
appropriately utilized and implemented, and this finding is considered to be fully remediated.

Description:

JavaScript engines have unpredictable memory-management practices, with unpredictable garbage collection
practices. Accordingly, any time a sensitive value is moved into memory, it will stay there until the JavaScript
engines determine that it is no longer in use and frees the memory for re-use (see References). Even at this
point, the memory is not overwritten and will retain the value until it is overwritten by other data. Accordingly,
sensitive data held in-memory by JavaScript is at-risk if process memory is dumped.

Affected Assets:

decryptWallet calls:

• ArConnect/src/components/dashboard/subsettings/WalletSettings.tsx
• ArConnect/src/routes/popup/send/auth.tsx
• ArConnect/src/wallets/auth.ts
• ArConnect/src/wallets/index.ts

getActiveKeyfile calls:

• ArConnect/src/api/modules/decrypt/decrypt.background.ts
• ArConnect/src/api/modules/dispatch/dispatch.background.ts
• ArConnect/src/api/modules/encrypt/encrypt.background.ts
• ArConnect/src/api/modules/public_key/public_key.background.ts
• ArConnect/src/api/modules/sign/fee.ts
• ArConnect/src/api/modules/sign/sign.background.ts
• ArConnect/src/api/modules/signature/signature.background.ts
• ArConnect/src/components/arlocal/Transaction.tsx

Analysis:

For the ArConnect browser extension, it was determined during scoping that a user is responsible for the
security of their own machine. That is, if malware dumps memory for the browser, ArConnect cannot be
expected to protect the user's private key and wallet information, which is held in-memory during various
function calls (as enumerated in the Affected Assets). Due to this predetermined Risk Management decision,
this finding is marked as Informational, as it is not considered to be a risk by Community Labs. Open Security,

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 15 of 22 @_OpenSecurity_

however, felt it was prudent to establish that there is a potential attack vector for ArConnect users that can be
mitigated with some effort.

Recommendation:

The main root of this finding is that decrypted, sensitive wallet information is held in memory for indeterminate
amounts of time, due to the unpredictable nature of the JavaScript engine garbage collectors. Starting with the
decryptWallet function in source/ArConnect/src/wallets/encryption.ts, it is possible to trace
the references path through various functions and determine when the need for that data begins and ends. For
example, line 53 of source/ArConnect/src/wallets/auth.ts utilizes the decryptWallet function in
the checkPassword function as a way of verifying the password, but does not actually utilize the wallet
information (Figure 2). This causes the decrypted JWK to be stored in memory for an indeterminate amount of
time.

Figure 2 – decryptWallet Function Call in auth.ts

A solution to this would be to make a new function that overwrites the in-memory wallet information that can be
called any time the wallet information is no longer needed. While there is no way to manually free the memory
reference and cause it to be freed, the in-memory data can be overwritten when a reference to the data is still
in-use. A potential implementation is described below; note that the data being overwritten needs to be
overwritten with data of the same length in order to be guaranteed that the memory is overwritten fully.

// While the "free" language here is a misnomer due to the lack of memory being freed,

// it is overwriting the sensitive data and gives a connotation of freeing due to the data

// no longer being needed.

function freeDecryptedWallet(jwk: JWKInterface) {

 jwk.kty = "000000000000000000000";

 jwk.e = "000000000000000000000";

 jwk.n = "000000000000000000000";

 jwk.d = "000000000000000000000";

 jwk.p = "000000000000000000000";

 jwk.q = "000000000000000000000";

 jwk.dp = "000000000000000000000";

 jwk.dq = "000000000000000000000";

 jwk.qi = "000000000000000000000";

}

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 16 of 22 @_OpenSecurity_

With such an implementation, once the decrypted wallet information is no longer needed, a call to
freeDecryptedWallet and passing the information by reference can allow for that memory to be overwritten.

References:

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_management

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 17 of 22 @_OpenSecurity_

Finding 4: Potential DOM-Based Cross-Site Scripting Vulnerability (Remediated)

Vulnerability Rating: Informational

Discovery Method: Manual testing

Remediation Status:

This finding was re-tested on 31 July 2023. The file with the vulnerable code was removed from the project in
order to prevent future introduction of the vulnerability. Accordingly, this finding is considered to be fully
remediated.

Description:

A DOM-based Cross-Site Scripting (XSS) attack occurs when uncontrolled input is inserted into the DOM via
JavaScript methods, such as via a document.createElement function call. If an attacker can provide HTML
to vulnerable code, a <script> tag could be provided that results in client-side code execution, allowing
exfiltration of secrets.

Affected Assets:

• ArConnect/src/api/modules/connect/overlay.ts

Analysis:

The createOverlay function creates a div and sets its innerHTML property to a string, which contains a
variable that is not validated to prevent XSS attacks (Figure 3). This vulnerability, if provided with attacker-
controlled data, could lead to client-side code execution, allowing an attacker to execute arbitrary JavaScript
within the browser.

Figure 3 – createOverlay Function Source Code

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 18 of 22 @_OpenSecurity_

This function is not currently called anywhere within the application, making this vulnerability hypothetical in
nature at this time.

Recommendation:

Sanitize data being passed to this function to ensure no DOM elements are provided or remove the function
from the codebase.

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 19 of 22 @_OpenSecurity_

Finding 5: No Input Validation (Remediated)

Vulnerability Rating: Informational

Discovery Method: Manual testing

Remediation Status:

This finding was re-tested on 31 July 2023. Community Labs developers implemented input validation utilizing
the typed-assert package in alignment with best practices. The code is implemented cleanly with DRY
principles by including common assertions within a utils file, and this finding is considered to be fully
remediated.

Description:

Input validation is crucial in preventing an attacker from performing injection-based attacks against any web
application. When a certain type of data is expected but an attacker provides a specially crafted, alternatively
formatted piece of data, unexpected behaviors can occur. Any time untrusted data is processed by any
application, it should first validate that the data matches the expected format in order to protect against these
attacks.

Affected Assets:

• ArConnect Wallet

Analysis:

No successful attacks were discovered during this engagement, largely due to the protections provided by
React's technology stack. As the entire application exists in the client-side, no databases exist for attacks such
as NoSQL injections. Due to the modern technology stack, there is no immediate risk which is why this is
labeled as an Informational finding.

Recommendation:

Validate all untrusted data prior to processing or displaying the information, especially on API calls that require
no permissions (such as the AddToken API).

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 20 of 22 @_OpenSecurity_

5 METHODOLOGY

Open Security utilizes a source-code audit methodology adapted from the OWASP Code Review Guide
(https://owasp.org/www-project-code-review-guide/). Accordingly, a detailed checklist is provided in Appendix
B – ArConnect – Secure Code Review Checklist.xlsx.

6 CONTACT INFORMATION
This report represents a “snapshot” of the security environment assessed at a specific point in time. Conditions
may have improved, deteriorated, or remained the same since this assessment was completed. Open Security
cannot guarantee the discovery of all system vulnerabilities, breaches, or attempted breaches. Should there be
any questions regarding the contents of this report, please don’t hesitate to contact us.

6.1 SECURITY TEAM SNAPSHOT

Passionate and forward-thinking, our team possesses decades of combined technical experience as top-tier
researchers, penetration testers, application security experts, and more. Drawing from experience in the US
military and leading technology firms, we pride ourselves on the capabilities we make available to our clients.
Open Security understands the importance of information security and appreciates the opportunity to have
worked on this engagement.

JOSHUA CHRISTMAN – CHIEF OPERATIONS OFFICER | JOSH@OPENSECURITY.IO

Josh Christman graduated from the Air Force Academy in 2013 with a BS in Computer Engineering and
Computer Science with a focus on Cyberwarfare. Following USAFA, he proceeded to get his Master of
Science in Computer Engineering from the Air Force Institute of Technology, focusing on Artificial Intelligence
and algorithms and publishing/presenting a paper at the International Conference for Machine Learning and
Applications. His Air Force career then continued into Offensive Cyber Operations, working for the premier
offensive cyber unit in the Air Force, spending time as an operator at the NSA and US Cyber Command in Fort
Meade, MD. Since transitioning out of the Air Force in 2020, he has focused on the private sector where he
has quickly transitioned from a Red Team Operator to running Red Teams, Application Security Teams, and
Vulnerability Management Programs in the fintech industry. He now runs all engineering efforts for Open
Security as the Chief Operations Officer.

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 21 of 22 @_OpenSecurity_

7 APPENDIX A – SCOPE
The scope for this engagement included a public Github repository branch for the source code review and a
beta Google Chrome application. It was predetermined that a user installing malware and dumping sensitive
information from memory was not an attack scenario that Community Labs was focused on addressing in this
iteration of the application, so focus was primarily given to Web and Browser Extension vulnerability classes.

Original Source Code:
https://github.com/arconnectio/ArConnect/tree/fffd1bdbdffca74021b7c386a8d65845d8bc59ca

Remediated Source Code:
https://github.com/arconnectio/ArConnect/tree/df999c5b965818e9984a9750b58da94964dc2fae

Google Chrome Extension: https://chrome.google.com/webstore/detail/arconnect-
beta/ekmpjilfjeghbjgddfgfbakkjmobfhhm

OFFENSE | DEFENSE | HUNT | STRATEGY |

OPEN SECURITY

OpenSecurity.com Page 22 of 22 @_OpenSecurity_

8 APPENDIX B – SECURE CODE CHECKLIST
See attached Appendix B – ArConnect – Secure Code Checklist.xlsx

